Keynote Speakers


Prof. Mohd Hamdi Bin Abd Shukor
University of Malaya, Malaysia

Biography: Professor Ir Dr Mohd Hamdi bin Abd Shukor received his B.Eng. (Mechanical), with Honours from Imperial College London and his M.Sc. In Advanced Manufacturing Technology & System Management from University of Manchester Institute of Science & Technology (UMIST). His Doctoral study was in the field of thin film coating for biomedical applications for which he was conferred Dr. Eng by Kyoto University. He is a Fellow of the Institution of Mechanical Engineering, UK, and a professional engineer registered with the Board of Engineers Malaysia. Prof Hamdi has devoted his career in nurturing research and innovation and has mentored over 70 PhD students, particularly in the field of machining, materials processing and biomaterials. He has authored more than 160 ISI journals and h-index of 26. He is also a director and founder of the Centre of Advanced Manufacturing & Materials Processing (AMMP Centre), in which has grown from modest-size team of researchers and engineers to an interdisciplinary research hub. Prof Hamdi has obtained recognition from various international and local organizations.


Plenary Speakers

Prof. Huijun Li
University of Wollongong, Australia

Title of Speech: The Impact of Robotics on Wire Arc Based Additive Manufacturing 

Abstract: Additive manufacturing (AM) builds up a component through the deposition of materials layer-by-layer instead of starting with an over dimensioned raw block and removing unwanted materials, as practised in conventional subtractive manufacturing. With the development of AM technology, the current focus has shifted to producing functional metal components of complex shape that can meet the demanding requirements of aerospace, defence, and automotive industries. Wire and Arc Additive Manufacturing (WAAM) is by definition a wire-feed and arc-based additive manufacturing that uses either the gas tungsten arc welding (GTAW) or the gas metal arc welding (GMAW) process has drawn the interest of the research community in recent years due to its high deposition rate. This technique has been presented to the aerospace manufacturing industry as a unique low cost solution for manufacturing large thin-walled structures through significantly reducing both product development time and “buy-to-fly” ratios.
This talk introduces an innovative fabrication method for large expensive metal components in aerospace industry. The proposed robotic wire and arc additive manufacturing (WAAM) system and its programming process are presented. The feasibility of the system is validated through experimental results by depositing large sample components. Challenges and future interests of robotic WAAM system are also discussed.  

Biography: Prof Huijun Li obtained a PhD degree in 1996 from the University of Wollongong; He has 22 years research experience in materials science and engineering.
He has published 4 book chapters and more than 300 papers over his career in the field of welding metallurgy, new alloy development, surface engineering, nuclear materials and microstructure characterization.
In 1995, he joined CRC Materials Welding and Joining as a postdoctoral research fellow at University of Wollongong. In 2000, he took a research scientist position at Materials Division, ANSTO (Australian Nuclear Science and Technology Organisation), he worked on a wide range of research projects in conjunction with the CRC Welded Structures, CRC CAST3, CRC Rail, British nuclear research organisations and American national laboratories. During this period, Prof Li pioneered research on 9-12% Cr creep resistant steel s in Australia. Prof Li started working at University of Wollongong from July 2008; he is heavily involved in research work with Defence Materials Technology Centre (DMTC), Energy Pipeline CRC (EPCRC), Baosteel Australia Joint Centre (BAJC), and Australian Rail Industry.
Prof Li has been supervising (or co-supervising) 28 PhD students and 10 postdoctoral fellows; he is the chief investigator of 26 research projects supported by DMTC, EPCRC, BAJC, Australian Research Council (ARC) and other industry sectors. He was involved in the preliminary work on the production of engineering components of Titanium alloys using one such method of additive manufacture, namely gas tungsten arc (GTA) welding with mechanised wire addition. He then proposed to produce intermetallics with twin wire system, combining the concept of additive manufacturing and in-situ alloying with GTA process. Gamma TiAl has been successfully produced with this method.
Prof Li was awarded Australian Museum Eureka Prize for Outstanding Science in Safeguarding Australia, 2013, Australia Endeavour Fellowship 2014, and Defence Materials Technology Centre - Capability Improvement Award in 2014 and 2016.